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We discuss Liouville's theorem for nonsmooth integrable systems of the billiard 
type and give a scheme of calculation of angle-action variables for the flow. We 
also deal with the problem of pseudointegrability. We discuss the relationship 
between the continuous-time (flow) and the discrete-time (map) approaches. We 
treat all these aspects through a specific billiard--a wedge embedded in a two- 
dimensional isotropic harmonic potential. Varying the parameters provides two 
integrable and two pseudointegrable cases. It turns out that the dynamics of one 
of the latter is indeed integrable in a certain sense. We also address the problem 
of applying perturbation theory. 

KEY WORDS: Billiards; integrability; angle-action variables, pseudoin- 
tegrability; symplectic maps; Poincar6 section. 

1. I N T R O D U C T I O N  

Integrable Hamiltonian systems play a central role in mechanics. They 
belong to the rare dynamical systems for which we know explicitly the 
flow. Moreover, thanks to the construction of angle-action variables 
(AAV), they are the basic systems for application of a perturbation theory 
and analytical study of some more complicated behaviors. 

A way to increase the list of integrable Hamiltonian systems is to con- 
sider piecewise integrable systems. They are given by an integrable 
Hamiltonian flow together with a transformation, say R in phase space 
which acts at discrete times (reflections on the boundary for billiards or 
kicks for non-autonomous systems, for instance). We will still say that the 
system is Hamiltonian if R conserves the energy, but the dynamics is no 
longer completely described by a Hamiltonian function. 
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Such systems may exhibit all the features of mechanical systems, from 
integrability to chaotic behavior. In the generic case, their phase space provides 
a mixed portrait made of islands of quasiintegrable motion embedded in a 
sea of stochasticity. This can happen despite integrability of the flow between 
the times where R acts because it makes the orbit jump from one torus of 
the integrable motion to another one in a way depending on the state before 
the transformation. The set of tori reached by one orbit or the order in 
which it visits them may be very complicated. Hence, to get an integrable 
system, R must at least conserve constants of motion of the integrable flow. 
Nevertheless, the system is still not a smooth Hamiltonian system and there 
is no guarantee that all the features of integrable systems will apply to it. 

The real point of this paper is to construct angle-action variables 
(AAV) for a billiard with a nonsmooth boundary, a wedge in a harmonic 
potential. Many authors who introduced integrable billiards (see refs. 1 and 
2, for instance) are interested in proving their integrability, by showing the 
existence of constants of motion in involution, or in calculating actions in 
view of the WKB approximation for the quantum billiard. In general, they 
do not describe in detail the level sets and calculate angle variables, since 
it is admitted that Liouville's theorem for integrable smooth Hamiltonian 
systems still applies. This point is not such a trivial one for billiards, since 
it is not only for pseudointegrable systems that the invariant level sets can 
be the union of disconnected sheets in phase space. This fact implies certain 
changes in the formulation of Liouville's theorem, and this renders the 
calculation of AAV not obvious. The point is to know how the discon- 
tinuities due to reflections are taken into account in the AAV formalism. 

Moreover, the theorem asserts that the Hamiltonian expressed in the 
AAV depends only on the action variables. It is interesting to know if this 
remains true for billiards despite of the nonconnected level sets. Since the 
perturbation theory of Hamiltonian systems usually deals with the pertur- 
bation of the Hamiltonian function itself, it is not evident how to take into 
account a perturbation of the boundary of billiards. Giving explicitly the 
Hamiltonian in terms of the actions for our billiard allows us to discuss 
whether usual perturbation theory can treat modifications of the boundary. 

There are two natural ways to deal with piecewise integrable systems. 
The first is to consider the flow (continuous time). The second is to look 
at the system only at times when the transformation occurs, by considering 
a discrete map T including R and the smooth evolution between these 
times (discrete time). In order to establish certain chaotic properties of a 
given billiard, it is often simpler to look for the map T rather than for the 
flow itself. The question of whether the properties of the map (such as 
Lyapunov exponents, decay of correlation functions . . . .  ) reflect correctly 
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the properties of the flow arises naturally (see refs. 3 and 4, for instance). 
It is then interesting to discuss the relation between the continuous and the 
discrete approaches even for integrable and pseudointegrable systems, since 
one can always learn from the simpler situations. 

The paper is organized as follows. In Section 2, we address the 
problem of integrability in piecewise integrable systems of the billiard type 
in the continuous-time approach. In Section 2.1, we recall Liouville's 
theorem for integrable smooth Hamiltonian systems. In Section 2.2, we 
define billiards and explain the main differences with smooth Hamiltonian 
flows with regard to the nature of level sets. We investigate what difficulties 
can arise when applying Liouville's theorem to such systems. We illustrate 
these considerations by constructing angle-action variables for the rec- 
tangular billiard and by underlining the existence of what Richens and 
Berry called "pseudointegrable" systemsJ ~ We describe what changes must 
be made in the theorem and in the construction of an AAV scheme for the 
smooth case to make them still valid for piecewise smooth Hamiltonian 
systems. In Section 2,3, we introduce a billiard with potential, the 
"harmonic wedge"--a  wedge embedded in a two-dimensional isotropic 
harmonic potential, and apply our scheme of construction of AAV to two 
integrable cases of very different kinds. We make some comments on the 
possibility of applying KAM theory to the harmonic wedge by use of the 
construction of AAV for both cases. In Section 2.4, we present a pseudo- 
integrable case of this billiard. 

In Section 3, we address the problem of integrability in the discrete- 
time approach. In Section 3.1, we recall Liouville's theorem for symplectic 
diffeomorphisms. In Section 3.2 we point out what problems could arise 
when the map we consider is the bouncing map of a billiard with non- 
smooth boundary. In Section 3.3, we ask what the relationship is between 
the AAV obtained for the continuous time and the AAV obtained for the 
discrete time. We construct AAV for the bouncing map of the harmonic 
wedge for the two integrable cases described in Section 2.3. This allows us 
to discuss the case where the bouncing map is not a diffeomorphism and 
the case where it is a well-defined Poincarfi section. In Section 3.4 we 
investigate what distinguishes the pseudointegrable case from the integrable 
one in this. approach. 

2. THE CONTINUOUS-TIME APPROACH 

2.1. Liouville's Theorem for |ntegrable Smooth 
Hamiltonian Systems 

We recall Liouville's theorem for integrable smooth Hamiltonian 
systems. Consider a system of n degrees of freedom with the Hamiltonian 
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function H~ q) which induces the flow r on the phase space M ~ 
Suppose that there are n functions F] ..... F ,  on M ~ which are integrals of 
motion in involution: 

{ F ; , H  ~ = 0  Vi, which implies F~(~~  V x ~ M  ~ 

{F;,  Fj} = 0 Vi, j 

where {., .} denotes the Poisson bracket. We will call such functions 
0 "constants of motion." Let M ~ (sometimes denoted by M ( r  , =k,.....r,,=,,) in 

what follows) be a level set of these functions: 

M ~ = {x M ~  i =  ],..., n} 

and assume that the n 1-forms dF~ are independent at each point of M ~ 
The theorem asserts: t6) 

(i) M ~ is smooth and invariant under ~0. 

(ii) If M ~ is compact and connected, then it is diffeomorphic to the 
n-dimensional to rus T ' =  {(cp] ..... cp,,) rood 2re}. 

(iii) Canonical equations of motion may be integrated by quadra- 
tures to give (d/dt)~0 = to(k). 

In view of Liouville's theorem, we will say that such a system is 
integrable (or briefly in what follows, that H ~ or ~0 is integrable). The 
angles #0 i and their conjugate momenta /~ are called "angle-action 
variables" (AAV). The canonical change of variables from (p, q) to (I, ~0) 
can be done explicitly with the help of the following procedure: 

Scheme 1 
1. Find the level sets M ~ associated to the n constants of motion. 

2. Find n one-dimensional independent cycles Fi on the torus M ~ 
3. Calculate the actions given by 

1 ~ p(k,q) dq, i= l , . . . , n  L(k) ,-, 

4. Calculate the generating function 

P q, 
S(I ,  q) = p(k( l ) ,  ) dq' 

qo 

5. Calculate the angles from q~ = (0/0I) S. 
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There are two main steps in the proof  of this theorem. First; one 
constructs n vector fields V i by calculating the symplectic gradient of the 
constants of  motion: 

_Le,  Fi' Oq / 

Using involution, one can prove that these vector fields are linearly inde- 
pendent, tangent to M ~ and commuting. The second step consists in 
proving a theorem which asserts that an n-dimensional smooth manifold on 
which are defined n vector fields having these properties is diffeomorphic to 
an n-dimensional torus. Points 2-5 of Scheme 1 are applicable to any torus 
in a symplectic space. 

We will see now how to adapt this theorem, and in particular the 
above scheme for constructing AAV, to piecewise integrable Hamiltonian 
systems. 

2.2. Prob lem of Bil l iards 

Billiards are dynamical systems corresponding to the motion of a 
pointlike particle in a domain Q c QO. The point reflects from the bound- 
ary OQ according to the law of elastic reflection and its motion between 
collisions is defined by the geodesic flow ~o associated to a Hamiltonian 
function H ~ with QO as configuration space. Let M be the phase space of 
the billiard, and OM the set of points (p, q) ~ M such that q ~ OQ and p is 
oriented toward the exterior of Q. We assume that Q0 is two-dimensional, 
not necessarily compact, but that the manifolds of constant energy of the 
billiard are compact. 

A billiard is a piecewise integrable Harniltonian system if the 
Hamiltonian H ~ on phase space M ~ i.e., the system without collisions, is 
integrable: there are two constants of motion between collisions. In general, 
it is not possible to find an explicit expression for the flow ~,  of the 
billiard, since we have to iterate the following discrete algorithm in order 
to obtain a solution: 

(i) Starting from x ,  e OM at time t,,, apply the reflection: x,, ~ Rx,,. 

(ii) Compute t, +1, the smallest time for which the trajectory issued 
from Rx,, reaches the boundary. 

(iii) Get the evolution from t,, to t,,+z by the geodesic flow starting 
from Rx,,: if t , ,<t<.t.+l,  then x ( t ) = ~ ~  and 
x,,+ 1 = x(t,, + l). 
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We will denote such a system by H~ reflections. 
When and in what sense will such a system be integrable? In other 

words, what could go wrong when we try to apply Scheme 1 to billiards? 
At a reflection, the orbit of the billiard generally jumps from one 

invariant two dimensional manifold (a torus if it is compact) of the 
integrable smooth geodesic flow to another. The manifold which is reached 
and on which the motion takes place before the next encounter with the 
boundary is determined by the state of the system before the reflection. By 
this process, the orbit may explore the whole manifold of constant energy 
in M. To obtain an integrable system, we have obviously to find constants 
of motion of the geodesic flow which remain constant at the collisions. But 
it is still possible that the orbit of the billiard reaches several (a discrete 
number) manifolds each one invariant under the geodesic flow. Hence, the 
constants of motion that we have to choose for the billiard are not 
necessarily the ones that lead to connected level sets in the case without 
collisions. The level sets M ~ in M ~ for the same constants of motion, may 
be the union of several smooth surfaces each one invariant under q5 ~ In 
this case, the level set M k =  { x ~ M I F A x ) = k s ,  i =  1,..., n} for the billiard 
is the union of disconnected pieces of M~. From the preceding, and since 
their configuration spaces are different, Mk is not identical to M~. We lose 
the smoothness of the level sets and the first assertions of Liouville's 

Fig. 1. (a) Unfolding of a trajectory of the rectangular billiard. We perform successive sym- 
metries of tile original rectangle M+ + about its sides so that the original trajectory (dashed 
line) is represented by a straight line. The four possible values of the monumentum along the 
original trajectory correspond to the passage of the unfolded one through the copies of the 
original rectangle denoted M+ +, M+ _, M_+, and M__. The bold rectangle represents the 
torus  M~,%k:r (b) One independent cycle F i. The solid lines are associated with the free 
motion between collisions and the dashed lines correspond to the jump due to the reflection. 
The area enclosed by this cycle gives the action I i. 
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theorem become wrong. To manage this difficulty we will paste smoothly 
the disconnected parts of Mk into a new surface M~,, and check if the 
remainder of the theorem still applies to this invariant manifold. 

Calculation of the AAV for the well-known rectangular billiard illu- 
strates the preceding remarks. The Hamiltonian function H ~  ~ " ~ ( P T + P ~ )  
describes a free particle on a plane and Q is a rectangle with sides of length 
a~ and a:.  

In this particular case where the billiard tiles the entire plane, the 
calculation of AAV must reproduce the results of the geometrical construc- 
tion which consists in unfolding the trajectory (Fig. la) and takes advan- 
tage of the fact that the billiard tiles the entire plane (see ref. 7 for 
instance). 

We can separate each direction i = l, 2. Constants of motion are the 
functions IP~l, i =  1, 2. 

1. The level sets are given by 

Mk ~ M(Ipd =k~, Ip-'l =k2) ---- M+ + w M + _  w M _  + w M _ _  

where 

M;,v = {(p, q) e M I P, =r P2 = vk2,  q ,  e [0, a l [ ,  q2 �9 [0, a2]} 

o Since M~k,.k.,~ is the union of four infinite planes each one invariant under 
~,0, the motion of the free particle (without boundary) would take place on 
one of these planes only, but the particle in the billiard at the collision 
jumps from one of the planes to another. This illustrates the above remarks 
on the nature of the level sets. 

2. Consequently, an independent cycle F,. crosses the discontinuity 
corresponding to one reflection: it is an orbit in one dimension (Fig. lb). 

3. We calculate the actions as usual from the areas enclosed by the 
cycles in the (p, q) space. We get I i = kiai/7~. 

4, 5. Since we have to consider disconnected areas of phase space, we 
expect to calculate different expressions of the generating function for each 
smooth coml~onent of Mk. In one dimension we have 

if Pi = k i ,  S ( I i ,  qi) = n i l  q i ,  rp i = n q~ 
ai ai 

if pi= - k , ,  S(I,, q~)=nli(2--~), rpi=2n--n q-~ 
ai 

822/83/1-2-4 
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We get a single expression for the frequencies: 

d = e~ = n2 ~i 

As expected, these results correspond to the definition of the torus M~ 
obtained in the geometrical approach. But there are two advantages in 
using this construction. The first is that we have just to follow a procedure 
that can be applied to any integrable billiard. The second is that we obtain 
a Hamiltonian function depending on the actions only. Indeed, by con- 
struction of M~ the variables (I, ~) are not changed at a reflection, so that 

H~ q) o reflectionsc*, H ( I ) =  ~-~ + ~-~_~/) 

The two above expressions of (cp~, ~P2) together with the expression of 
(11, ~ )  (after replacing k; by fP;I) define an isomorphism from (p, q) to 
(I, ~o). This implies a first change to be made in Liouville's theorem: since 
we pasted the disconnected parts of M k, this level set is only isomorphic 
to a torus, and we have lost differentiability of the change of variables. 

It is important to note why the construction by quadrature works for 
the rectangular billiard. The crucial step is the characterization of M~. If 
it is diffeomorphic to a torus, the second step of the proof of Liouville's 
theorem, applied to it instead of M~, is still valid and we can use without 
changes points 2-5 of Scheme 1. 

If it is not, this can be one obstacle to the validity of Liouville's 
theorem. This difficulty was underlined by Richens and Berry. (5~ They 
introduced a billiard ("square torus billiard") which has two constants of 
motion but which is not integrable. The trouble comes from the fact that 
in this case the surface M~, is diffeomorphic to a five-handled sphere. 
Indeed, the pasting of the components of M k may introduce singularities 
of nonzero index in the vector fields associated with the constants of 
motion, so that the genus of the resulting surface is different from 1. The 
presence of these singularities prevents us from applying Liouville's 
theorem, which assumes that the vector fields J VFi are not singular: there 
are no global angle-action variables. Following Richens and Berry, we will 
define a system of two degrees of freedom having two constants of motion 
in involution and for which the phase space is foliated in two-dimensional 
invariant manifolds isomorphic to multiply handled spheres as a 
"pseudointegrable" system. Note that the paper of Richens and Berry does 
not deal with integrable billiards: it does not discuss the consequences of 
pasting the level sets in integrable cases for the calculation of angle-action 
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variables and for the expression of the Hamiltonian in terms of the actions 
only. 

To sum up what we learned from the above example and from the 
counterexample, we have to change Scheme 1 slightly in order to establish 
an AAV calculation scheme applicable to other billiards. 

Scheme 2 

1. Find the level sets M k associated to the n constants of motion. 

1'. Characterize Mk, which may be piecewise smooth, being the union 
of parts of toil of the motion without collisions. Paste the disconnected 
parts of Mk to obtain M[, in such a way that the symplectic gradients of 
the constants of motion will form continuous vector fields on M~. Verify 
if this surface is diffeomorphic to a torus. This can be checked by calculating 
the index of eventual singular points of the vector fields or geometrically by 
correct identification of edges and vertices of the sheets in phase space. 

2. Find n one-dimensional independent cycles F; on the torus M~. 
These cycles may be unions of smooth curves each one lying on discon- 
nected parts of Mk. 

3. Calculate the actions given by the areas 

2rc/~ =~ p(k, q) dq 
"t5 

which is a sum over the continuous pieces of F,.. 

4. Calculate the generating function, which has a different expression 
on each continuous piece of the level set. 

5. Calculate the angles ~ by differentiation of the different expres- 
sions of the generating function. 

We then obtain the frequencies to(I) and the Hamiltonian function 
H(I) depending on the actions only. Since by construction of M~ the 
variables (I, ~) are not changed at a reflection, the resulting Hamiltonian 
H(I) contains the whole dynamics of the system: the geodesic flow and the 
reflections. 

Following this scheme, we will now construct AAV for the two 
integrable cases of a billiard with potential. 

2.3. AAV for the Flow of the Harmonic Wedge 

2.3.1. Description. The "harmonic wedge" is characterized by 
(Fig. 2): 
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q2 

I 

Fig. 2. The harmonic wedge. The boundary is made of two straight lines intersecting at B 
with an angle ft. There is an isotropic harmonic potential centered at O at a distance e from 
B on the bisector of the angle. Trajectories are made of pieces of ellipses. The arc of a circle 
is the location of the maximum of potential energy: it bounds the motion in the q2 direction. 
Definition of polar coordinates (r, 0) is indicated. 

(i) The Hamiltonian including an isotropic harmonic potential: 

H~ (Pi + P~) +-2 ( ql + P~+P-@+r2r- 

(ii) 

(iii) 

Equipotentials are circles centered on the origin O. This 
Hamiltonian is invariant under rotations. Trajectories between 
collisions are arcs of ellipses. 

The boundary, two straight lines intersecting with an angle fl 
at B. 
The position of O, at a distance e from B on the bisector of the 
angle. We will take e > 0 if O lies inside the accessible domain Q 
(as in Fig. 2) and e < 0 if O lies outside Q. 

The motion is bounded by the boundary and by the potential. 
This billiard is isomorphic to the system of three particles on a line 

interacting with harmonic potentials. This can be seen by performing the 
standard calculation for the linear chain in solid-state physics. The main 
steps are the following. First, introduce a canonical transformation which 
makes the kinetic energy isotropic when the masses of the particles are not 
equal. Second, write the Hamiltonian in the normal modes. The corre- 
sponding billiard system is then obtained by freezing the center of gravity. 
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q2 

Iz, '- q l  
i 

B 

Fig. 3. Coordinate system (ql, q-,) chosen when fl= n/2. 

The sides of  the wedge represent the collisions between particles. The 
corner  represents triple collisions. The angle fl depends on the masses of  
the three particles and the distance e depends on the distances between the 
particles at the equilibrium position. 

Varying the total energy E = H is equivalent to varying e. So we fix 
E =  1. Note  that  we will consider only the invariant subset of  phase space 
corresponding to "proper"  orbits of  the billiard, i.e., orbits having collisions 
with the boundary  (an orbit  having a collision has infinitely many  colli- 
sions). The other, nonproper ,  orbits belong to an invariant domain  of  the 
phase space in which the system is simply one of  the two noncoupled 
oscillators described by H ~ 

Fig. 4. One independent cycle Fi of the harmonic wedge with fl = ~/2. The arc of a circle of 
radius (2Ei) ~/2 is associated with the harmonic motion between collisions and the dashed line 
corresponds to the jump at the reflection. The area enclosed by this cycle gives the action I~. 
Definition of the angle %(Ei) is indicated. 
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We will now treat the following two integrable cases according to 
Scheme 2. 

(i) f l=n/2  with any e:~0. 

(ii) e = 0  with any ft, 

2.3.2.  Integrable Case 13=Tt/2. It is convenient to work in the 
coordinate system of Fig. 3, where qt is parallel to one of the sides (which 
we will call side 1) and q_, to the other side (side 2). We define the 
parameter  g - e / x / ~ .  The energies h ~ = '  ' ' ~_(P7 + qT), i= 1, 2, of both modes 
are constant. The system remains separable, which makes the calculation 
very simple. The level sets are given by h ~ = E t and h ~ = E  2. If e >0 ,  we 
have to distinguish between two cases: (a) 2E,<~g'- for i =  1 or 2 (there are 
no collisions with sidej, jr  (b) 2Ei>e'- for both i =  1 and 2. The phase 
space is the union of two invariant subset M I'~ and M Ibl corresponding to 
these two cases. Note that there are also trivial cases, if e is sufficiently big, 
for which all orbits are nonproper: Mle, e , )=  M ~ and we can use the 

�9 tEl. E2) 

AAV of the system without collisions. The next calculations are done for 
case (b). 

1. We have that 

Me EI " E2 ) ~ M~h~ = E,. h_, ~ = ~) 

is a piece of the torus M ~ We can reduce the calculation to the (El, E2}" 

study of the one-dimensional billiard given by Hamiltonian h ~ and a 
wall at qt = - s  We introduce AAV (J~, ~i) for h,.~ Ji = -E~  and ~ =  
arctan(p,/qA e [ - n, hi. 

1'. For each one-dimensional system, we can define the vector field 
V ~ = J V h ~  U___qj). We identify the point (q , ,p~)= ( - g ,  - x / ~ , )  with 
the point ( - g ,  x/2Ei): this applies cycle F, = ME, of Fig. 4 on a circle�9 The 
resulting surface MI'E," e,_~ is diffeomorphic to S t |  t -  yz. 

2. Cycle: F~ corresponds to an orbit of the one-dimensional system, 
and then includes one reflection (Fig. 4). 

3. Action: we define the angle 

then 

~o(Ei) = arccos e [0, n[ 

E; {2~o(Ei) - sin[2~o(E;)] } L=~ 
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4. Generating function: 

51 

if p,. > 0, S( I;, q;) = J I_eP( Ei, q) dq 

= --2El ~ '  sin2(e) de 
--ao(Ei) 

if p ; < 0 ,  S(Ii, q3 = 7cIi + p(E;, q) dq 

f0 ~i = X I  i - -  2E; sin2(~) d~ 

Then 

S(I;, qi) -- rd; + @ [ sin(2o~/) - -  2e,.] 

with 

ei=~(Ei,  qi)= + a r c c o s ( q ~ / )  and Ei = E(Ii) 

5. Angle: 

We get 

0S zc~; 

DI+ ~o(Ei) 

d ?r 

dt ~i  = (1)(It) = OLo( E (  i i )  ~ 
and 

H~ q) o reflections ~ H(I) = E(11 ) + E(I,_) 

Case (a) leads simply to Ij and <pj defined as before, I ; =  - E ; ,  <Pi = a+, 
and 

H~ q) o reflections ,*~ H(I) = Ii + E( Ij) 

Due to the distinction between case (a) and case (b), the change of 
variables leading to AAV is not the same in the whole phase space. 
Geometrically the construction of AAV corresponds to rescaling the 

0 angular variables 0c; so that the piece of the torus M(E,.~21 on which the 
motion with collisions takes place is mapped onto a torus (Fig. 5). Indeed, 
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i 

a0(E,) I , 

t 

~o (El) 

Ca) 

i 

/ i  
f 

(b) 

Fig. 5. (a) The torus diffeomorphic to M ~ of the two noncoupled harmonic oscillators ( E l ,  E21 

defined by (El, E2) and parametrized by (~x t , ~,). The bold box represents the boundary of 
the harmonic wedge with fl = n/2. The arrowed line of slope 1 is an orbit. The dotted lines 
represent the reflections. (b) The torus diffeomorphic to the level set M~e,. e.~ of the harmonic 
wedge with fl=r~/2 defined by (1~, I ,)  and parametrized by (~o~, r It is obtained by rescal- 
ing the bold box of(a).  The orbits become straight lines of slope tan (f2) = eo(E(ll ))leo(E(12)). 

the side i is given by qi~[--g ,  ~ / ]  and qj=--g, so that, in variables 
(al,  a2) at fixed values of (El,  E_,), ai~ [ --%(Ei), %(Ei)] and % =  __+ %(Ej), 
where j:/:  i (minus sign corresponding to 0M, i.e., to our convention of 
considering the outside-oriented momentum on the boundary). 

The motion takes place in the interior of the rectangle limited by the 
sides, and the reflections identify opposite faces of this rectangle. This gives 
us another way to see that Meg,. ~ is diffeomorphic to a torus. 

This case is simpler than that of the rectangle, since we do not have to 
paste disconnected areas of M. Note that here the billiard also tiles the plane. 

2.3.3. I n t e g r a b l e  Case c = 0 .  In this case the center of the 
potential 0 is at the vertex B. The absolute value of the angular momen- 
tum P0 is constant. We take H ~ and [Po[ as the two constants of motion. 
Note that we could choose the constant of motion to be p~. We prefer the 
absolute value, because choosing Po leads to a level set MOo , , =E,p~=L-) 
which is, even in the case without collisions, the union of two disconnected 
surfaces each one invariant under the flow and diffeomorphic to a torus. 
Hence the natural parameter of the tori (or, here, parts of tori) is the value 
of the angular momentum. 

1. We have 

McE. ILl) ~" M(H~ Ip01 = ILl) = MtH~ Po= ILl) k_) M(HO=E, Po= --ILl) 
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Fig. 6. (a) Cycle F o on M ~ of the CE. LI" (b) Cycle Fr on M ~ ce.L~. (c) Cycle Ft on MqE. iLl~ 
wedge. 

M ~ is the union of two disconnected tori each one invariant under ~o  IE, ILl) 
0 and MIE. ILl) is the union of two pieces of each torus constituting M~e" Itll" 

It is then convenient to introduce AAV (J, a) of H ~ considering H ~ and 
Po as constants of motion and denoting by MOlE, L) =-- M~ the 
(connected) level set diffeomorphic to a torus: 

�9 Cycles: F o and F,. (Figs. 6a and 6b). F,. is an orbit of 

h~ r) = -~ 

�9 Actions: 

E-ILl 
J1 = L and J2 = 

2 

�9 Generating function: 

S(J,  r, O) = Jl 0 + S,.(Jl, J2, r) 
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where 

and 

S,.(J], J , ,  r ) =  f f _  _ ( 2 E  ILIx,_ x'-) '/'-dx 

=nJ2 + lJ]l arctan [ ris-~+ t(r)] - E arctan[ t(r) ] 

2 -r ' -  t(r) +r+ _ 
2 t(r) 2 + 1 

�9 Angles: 

I"'-+__ = E +_ ( E ' -  - L "-) '/2 

E =  2J  2 + IJ~l 
[ - - ( r  2 -- r 2_ )(r 2 - - r ~  )] ,/2 

t(r) - rZ r 2 

OS 0 + sign(po) arctan / 
' = OJ---~, = \ 

OS / 
c~2 = OJ~ - arctan r z - -EJ  

,p,_ '~ 
r'-+lL[J 

�9 Frequencies: 

d d 
-~ ~1 = re(J.) = sign(J~ ) and dt  ~2 = co(J,_) = 2 

1'. As we can see in Fig. 7, M(E, ILl) is the union of  two surfaces, each 
one a part  of  a tube diffeomorphic to a t runcated cylinder. Indeed, the 
vector  field associated to H ~ is, in coordinates  (r, 0, P,.,Po), V~ = J V H ~  
(p,., po/r 2, po/r3-r ,  0) and the one associated to IPol is V,_=JVlPol = 
(0, sign(po), 0, 0). We can clearly paste the two parts of  McE" ILl) without  
introducing singularities in these vector fields to obtain MIE. ILl~ which is 
diffeomorphic to a torus. 

2. Cycles: F] includes one reflection and F2 is identical to F,. 
( Fig. 6c). 

3. Actions: 

/,  =-P ILl : -  fl IJl [ 
g R 

E-ILl 
and 12 = - -  - J2 

2 
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Pi- 
t 

x 11 
--. .: J - -  2a.-" 

",oo,. 
�9 , ...... ,.,...'* 

Fig. 7. The piece of M~e. lLi ~ with p0>0:  the projection in plane ( p , , r )  is an orbit of 
h~ r) = �89 + L2/r 2 + r 2) (see the cycle Fr of Fig. 6b). The arrows represent the vector field 
J VILI. I fpo  <0,  the arrows would be oriented in the opposite direction (of decreasing 0) and 
we would get a picture of the second piece of M~E" ILL~" These two pieces can be smoothly con- 
nected to form a torus. 

4. Generating function: we have to consider two expressions of S: 

o n  M C H ~  E.po= ILl), 

on M(tt~ -ILl). 

5. Angles: 

S( I i .  I2. r , O ) = - f i l l O +  Sr I i , I 2 .  r 

S ( I i ,  12. r. 0) = ~ Ii(2fl - O) + S,. ~ 11,12. r 

Then 

7~ 
o n  M ( H O = E ,  Po=ILI~ , COl = ~ 0 ~ 1 E  [ 0 ,  ~ [ ,  go2 = ~2 

7E 
on M,l~,O=E.po=_l/_l~, gol = f l ~ , ~ [ - - r r ,  0[, q~z cz~ 

go, = sign(J1) ~ ,  ~ [ -rr,  n[ ,  (,02 : 52 
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and 

We get 

d z~ d 
atOP, =co(I , )=~,  ~(p2=~o(I,_)=2 

H~ q) o reflections r H(I)  = 212 +f l  Ii 

We had to paste parts of tori of H ~ as for the rectangular billiard. The 
particular interest of this example is that the billiard does not necessarily 
tile the plane: the surface M~E, jz-I~ is diffeomorphic to a torus for any ft. The 
construction of AAV is more general than the geometrical one, which con- 
sists in unfolding the trajectory. We point out that the vector fields can be 
nonsingular, even if the boundary has a nonrational angle. Here the 
preimages of the singularity of the boundary are not dense in phase space 
(they lie on a manifold of codimension 1, which is singular for the change 
of variables, even in the case without collisions). Hence the orbits are not 
affected by the singularity, whereas in the case of the square torus billiard 
these preimages are dense and almost all orbits are separated by the dis- 
continuity. 

2.3.4. Perturbation of the Boundary. Now the question 
arises of whether the single Hamiltonian formulation including reflections 
is preserved when we perturb the integrable situations. The answer differs 
for the two cases. 

In the case fl=z~/2, we may perturb the system by changing the 
angle ft. Unfortunately, when we do this, the reflections expressed in the 
AAV are no longer the identity, so that we are forced to handle explicitly 
the collisions and we lose the structure introduced above: the system 
described by H ~ p = ~/2 I(i) becomes H ~ p = ~/2 + a~(I, c# ) o reflections. 

In the case e = 0 we may perturb the system by changing the value of 
e. Since L = 0 is a singular value for the change of variables, we cannot 
treat orbits having vanishing angular momentum at a certain time through 
the AAV introduced for the integrable case. This corresponds to orbits 
passing through B or being tangent to the boundary. But we can use the 
same variables for the other orbits which define an invariant set of nonzero 
measure in phase space, for most values of e and fl, made of those orbits 
going directly from one side to the other. So we get a perturbed 
Hamiltonian 

H(~)(l,(p) 2i,_+fl__i1 e = rc + ~ r(1,9) sin(O(I, ta)) 



I n t e g r a b i l i t y  and Pseudointegrability in B i l l i a rds  57 

without an additional reflection rule, which describes this particular type of 
orbits. The study of this Hamiltonian should allow us to get information 
on the corresponding restriction of the phase space. Unfortunately, the very 
complicated form of the potential in AAV did not allow us to pursue this 
direction. Note that in both cases we may also perturb the system by mak- 
ing the potential anisotropic. 

2.4. Pseudoin tegrab le  Case 13 = 3xT/2 

The situation and definition of (ql, c12) are shown in Fig. 8. We have 
the same constants of motion as in the case/~ = n/2. 

The shorter way to check that this system is pseudointegrable is to 
examine the motion of the billiard point using coordinates (~1,0~2) at fixed 
values of (El E2), i.e., on a torus M ~ of the motion without collisions. ' (El, E2) 

The side i (parallel to axis q~) is given by qi~ [G x / ~ , ]  and qj=~, so 
that, in variables (0h, 0c2) at fixed values of (E~, E2), e ;e  [ - ~ g ,  ~j] and 
09= _+0~j, where j r  and ~i--arccos[g/(2E~) v2] s [0, re], i =  1, 2 (plus sign 
for 09 corresponds to OM, i.e., to our convention of considering the outside- 
oriented momentum on the boundary). 

The motion takes place at the exterior of the rectangle limited by the 
sides, and the reflections identify the opposite faces of this rectangle (see 
Fig. 9). It is easy to check that the resulting surface M~E,.e,.~ with these 
identifications is isomorphic to a two-handled sphere, so that the system is 
pseudointegrable in the sense of Richens and Berry. Is) 

Although the energies of the two modes are conserved, the system is 
not separable, due to collisions. Indeed, when we follow the evolution of 
coordinates (p~, q~), we have to invert p~ as one collision with slide 2 
occurs, i.e., when q~ = g  and pl > 0  if, and only if, at the same time q2>g. 
When fl = rt/2 we did not need to follow the evolution of q2 to know when 
to invert P l: this is the difference between the two cases. 

O 

ql q2 

Fig. 8. Coordinate system (ql ,q2)  chosen when /3=3rr/2. Here O is inside the billiard 
(~>0). 
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~ 2  J 

-..____~ 

Cr 2 

/ / / 

. . . . . . .  [ . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

D ~ 

/ /  Y 
--71; 

~----...--...-~ O. ~ 

(a) (b) 

Fig. 9. The torus diffeomorphic to M ~ of the two noncoupled harmonic oscillators IE I . E2) 
defined by (El, E2) and parametrized by (~l, ~-,). The bold box represents the boundary of 
the harmonic wedge with fl= 3r~/2. The arrowed line of slope I is an orbit. The dotted lines 
represent the reflections. (a) e > 0: the bold oblique lines delimit two invariant domains, one 
with only nonproper orbits and the other with only proper orbits (like the one represented). 
(b) e <0: there are no longer nonproper orbits. 

Nevertheless, it is worthwhile inspecting in more detail the dynamics  
on the level set M(e~,F.,_) in the case e > 0 .  Since 0~i < rc for i =  1 and  2, there 
are orbits which never meet the rectangle (nonprope r  orbits corresponding 
to trajectories such as the one in Fig. 10). Then  Mte,  e,) is made of two 
invar iant  manifolds with bounda ry  (see Fig. 9a). Note that, as ment ioned,  
there can also be nonprope r  orbits in the case f l =  re/2, but  there are no 
level sets which conta in  these kinds of orbits together with proper  orbits. 

It can be proved that the restriction of M(E,. &~ to nonprope r  orbits is dif- 
feomorphic to a cylinder, and the restriction to proper  orbits is dif- 
feomorphic to a torus with two holes (that the orbits never encounter) .  
Consequent ly  each orbit  of the system with fl = 3r~/2 and  e > 0 takes place 
on a piece of a torus. Hence the dynamics  is that of an integrable system. 

Fig. 10. Two nonproper trajectories of the harmonic wedge with fl= 3n/2 and e>0. One 
of them is tangent to the corner at B. It belongs to the boundary of the invariant space of 
nonproper orbits. 
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The definition of pseudointegrability is then a question of point of 
view. If we consider only the topology of the level set, the system is not 
integrable, whereas if we take into account the dynamics on this level set, 
the system can be viewed as integrable. 

3. THE D ISCRETE-T IME A P P R O A C H  

3.1. Liouvil le's Theorem for Maps 

Liouville's theorem has been extended to symplectic maps/81 Since it 
seems very natural to study billiards systems through their bouncing map, 
we will now discuss integrability in the discrete-time approach. 

Let T be a symplectic map which acts in a 2m-dimensional phase 
space M~T( Let FI ..... Fm be m constants of motion (i.e., Fi(Tx)=Fi(x),  
V x ~ M  try) in involution. Let Mtk rl be a level set of these functions: 
M~ r~ = {xEMCr~IF~(x)=ki, i =  1 ..... m} and assume that the m 1-forms 
dFi are independent at each point of M~ r~. The theorem asserts: 

(i) M~ r~ is smooth and invariant under T. 

(ii) I fMk r~ is compact and connected, then it is diffeomorphic to the 
m-dimensional torus ql-"' = {(~bj ..... ~b,,,) mod 2n}. 

(iii) There exist angle coordinate ~ and conjugate momenta K such 
that the map can be written in the form 

T(K, ~) = (K, t~ + f~(K)) 

The canonical change of variables from (p, q) to (K, ~) can be done 
explicitly with the help of the same procedure as in Scheme 1. These results 
are valid for maps that are diffeomorphisms. 

Consider now the particular case where the map T is a Poincar6 sec- 
tion of a smooth Hamiltonian system of 17 degrees of freedom (so that 
m = n -  1). If the surface of section is smooth and transverse to the flow, 
i.e., the Poincar6 map is defined correctly, then T is a symplectic dif- 
feomorphism and the above theorem applies on it. 

3.2. Bouncing Map of a Billiard 

It is natural to study billiards through the bouncing map T, the return 
map with M I T I - a M  as the two-dimensional surface of section. There is 
one difficulty which just occurs in the study of billiards with nonsmooth 
boundary. If DQ is the union of a discrete number of smooth components 
connected at points where 0Q is only C k, then T is only C k-  1: if k = l, T 
is a homeomorphism and if k - -0 ,  T is discontinuous. Moreover, it can 
happen that the flow is not transverse to OM. At points of tangencies, the 
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flow is not  differentiable and T is discontinuous.  Hence in general T is not  
a Poincar6 section. It is given explicitly by several different maps  T,j 
(applied on points going from a smooth  componen t  i to another  one j). 
Each one of  these maps  acts in a different domain  of  the phase space and 
the frontier between these domains  is determined by the singularities of  T. 
In what  follows, we will say that the map  T "consists of"  the maps  To.. 

For  such maps the question arises of  the applicability of  Liouville's 
theorem. The following three subsections will discuss the relationship 
between the concepts of  integrabitity in the cont inuous- t ime approach  and 
integrability of  the discrete map. 

3.3. AAV for the Bouncing Map of the Harmonic Wedge 

3 .3 .1 .  D e f i n i t i o n s .  Since we will treat the problem in the har- 
monic  wedge billiard, we will first discuss singularities in this part icular 
case. There are three types of  discontinuities of  T, the existence and nature 
of  which vary according to the parameters  fl and e. 

Type I. The angle fl at B (see Fig. 11). As explained in ref. 9, if the 
angle fl at a vertex B of  a billiard is fl = n/n, then T" is cont inuous  a round  
B. The reason is that  in this case the map  is 

x o E M ~  (Hq~,) x0 

w h e r e / / i s  the natural  projection on Q defined by x = (q, p) ~-~ q, is con- 
t inuous (the time needed for n reflections tends to zero when the orbit  
tends to B). 

Type II. The trajectories tangent to the boundary  (see Fig. 12). If  e < 0, 
there cannot  be trajectories inside Q which are tangent to the boundary.  

Fig. I 1. Discontinuity due to the angle in the harmonic wedge with fl = 200 ~ and s = 0.2: 
two initially near trajectories (a and b) are separated. They start from the same point on the 
right side (denoted by a, b) with slightly different momenta such that a has its first collision 
close to B on the right side and b has its first collision close to B on the left side. Then, since 
reflections are different for both trajectories, they are separated and their next collisions occur 
at two distant points. 
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b 

a a 

B 

Fig. 12. Discontinuity due to tangencies in the harmonic wedge with f l=60 ~ and e= 1.2: 
three initially near trajectories. Two of them, which remain close, are labeled by a and the 
other is labeled by b. They start from the same point on the right side (denoted by a, b) with 
slightly different momenta such that b has its first collision on the left side and the two other 
trajectories just "miss" the left side and have their first collision on the right side (one of them 
is tangent to the left side). After reflection, b has its second collision on the right side. 

I f  fl > rt a n d  e > 0, t r a j ec to r i e s  t a n g e n t  to  the  b o u n d a r y  can  be  c o n s i d e r e d  

as n o n p r o p e r .  T h e n ,  d i s con t inu i t i e s  in the  m a p  T due  to  t angenc i e s  exist  

on ly  if  e > 0 and  fl < n. 

T y p e  III .  T h e  t r a j ec to r i e s  t a n g e n t  to the  ve r t ex  B w h e n  fl>n (see 

Fig. 13). If  e > 0 ,  t r a jec to r ies  t a n g e n t  to the  ve r t ex  c a n  be  c o n s i d e r e d  as 

n o n p r o p e r  (Fig.  10). T h e n ,  d i scon t inu i t i e s  in the  m a p  T due  to  n o n c o n -  

vexi ty  at the  c o r n e r  exist  o n l y  if  fl > ~ a n d  e < 0. 

Fig. 13. Discontinuity due to tangencies at an angle greater than n in the harmonic wedge 
with fl = 3n/2 and e = -0.2: two initially near trajectories (a and b). They start from the same 
point on the right side (denoted by a, b) with slightly different momenta such that a has its 
first collision close to B on the right side and b, being tangent to the corner, has its first colli- 
sion on the left side. Then they are separated and their collisions occur at distant points. 

822/83/I-2-5 
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We also introduce Birkhoff-like variables (p, s) on OM. To do this, we 
define the oriented tangent to the boundary by (ll cos(fl/2), sin(fl/2)) in 
the coordinates system of Fig. 2, with it = - 1 on the left side and/ t  = 1 on 
the right side. p is the projection of the momentum p on this tangent and 
s is the arc length parametrizing OQ (it is the Euclidean distance from the 
point on the boundary to B, with a negative sign on the left side). The map 
T expressed in these variables is symplectic. T consists of four maps: 
T;;, i = 1 or 2, applying at points going from side i to itself directly (i.e., 
without encountering the other side before reaching side i) and To., i = 1 or 
2 and j :/: L applying to points going from side j to side i directly. Note that 
we could also reduce T to two maps T~ and T b using symmetry by identi- 
fying the sides: To r Til with any i e  { 1, 2} and Tb r To., with any 
i , j ~ { 1 , 2 } , j # i .  

Here, the dimension of the phase space OM of the map T is 2, so that 
we have to find only one constant of motion. 

3.3.2. Integrability and Discontinuous Maps: Case ~=n/2.  
When the map T is the bouncing map of a billiard, it can happen that it 
is not a diffeomorphism. In this case, how is integrability of the billiard 
reflected in the map? In other words, can we still construct variables (K, ~) 
having the right properties? We will answer this question for the integrable 
case f l = n / 2  of the harmonic wedge. Remember that T 2 is continuous 
around the singularity of type I at B. There are also discontinuities of 
type II, but they belong to the frontier between M t'~ and M tbl. 

P 

S 

Fig. 14. The level set Met of the map T when fl = n/2, in Birkhoff's coordinates (p, s). Here 
r~ = (2E~)~/2 and r, = (2E-2E~) ~/2. Orientation corresponds to that of the boundary. 
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We will first try to apply the construction of AAV for the map. The 
energies h ~ and h ~ of both modes are conserved (we use the same defini- 
tions as in Seotion 2.3.2). But the expressions of these functions in variables 
(p, s) are not the same in the whole phase space of T. On side 1, 

2E I =p2 + (s - g)2 and 2E 2 = 2 E - p 2  _ (s - g)2 

and on side 2, 

2E, = 2 E - p 2 - ( s + g )  2 and 2E2=p2 + ( s + g )  2 

If we consider orbits in M (") there are no difficulties. In M cb~, we can con- 
sider, for instance, the energy of the first mode as the constant of motion. 
The resulting level set ME, is the union of two arcs of circles (see Fig. 14). 
As in the continuous-time approach, we have to paste the pieces of the 
level set to pursue the calculation. We will rather proceed in a clearer way 
by presenting a geometrical construction in Appendix A which gives finally 
the same definition of an angle ~b for which T is expressed as a discrete 
rotation, and which can be reproduced for the pseudointegrable case when 
~>0.  

Note that there is still another way to deal with the problem. Since the 
difficulty is to treat discontinuities due to the fact that we take into account 
the whole boundary of the billiard, a way to avoid problems is to consider 
only one of the sides to define the Poincar6 section. We call T i the map 
from side i to side i (with eventual collisions with the other side before 
going back to i). The energy h ~ is conserved by Ti, so that we may apply 
the construction of AAV. The level set M c~) is the cycle F~ obtained for 

h i = Ei 

the continuous time (Fig. 4). Then we simply get 

(K, r = (L, ~,) 

This result is not surprising since the sides of the wedge are straight lines 
~01=21t and cp2=2n in the angle coordinates constructed for the con- 
tinuous time. 

3.3.3. In tegrab i l i t y  and Poincar6  Sect ions:  Case e = O .  In 
the particular case where T is a Poincar~ section of Hamiltonian system, 
what is the relationship between the AAV (K, ~) constructed for T in the 
(2n-2)-dimensional  surface of section and the one (I, ~) constructed for 
the Hamiltonian flow in continuous time in the 2n-dimensional phase 
space? In general, one cannot expect that the surface of section defining T 
is given by ~o i = const, i = 1 ..... n - 1, in which case we would have ~b,. = r 
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i = 1 ..... n - 1 (as in case fl = re/2 above). ~ can be a more complicated func- 
tion of ~. 

We will answer this question for the integrable case e = 0 of the har- 
monic wedge by applying Scheme 1 for maps and comparing the result 
with the one obtained for the continuous time. 

Since in this case all trajectories go from one side to the other one, the 
map T consists of Tb only and is a diffeomorphism. In coordinates 
(Ptt, qtt = (r,p,) =(/tp, l~s) (which identifies the two sides) the constant of 
motion IPo[ is given by IPol = qj i (2E-p~  t -q~l) ~/'-. The level set Mipui = ILt 
is the cycle f r  introduced above for the construction of AAV for the con- 
tinuous time. As a consequence we have 

E-ILl 
K ~ / _ 9  - -  - -  

2 

Note that the energy E is a parameter  of the map and no longer a constant 
of motion. Hence the generating function can be expressed with the one 
obtained in the case of the continuous time: S(K, qII)=S,.(Jt(E,K),  

% 

7_.5 

.................... t 

- , g  

" "  
~q01 

Fig. 15. The torus M~'e. ILI)defined by (I t, 12) and parametrized by (~o1,~o2) which is 
isomorphic to the level set M~e. rLi) of the harmonic wedge when e = 0 .  The two sides of the 
wedge are represented by the two curves ~oj(~0_,). These curves are parametrized by I~ and 12 
which depend, at a fLxed energy E, on ILl. Here fl = 60 ~ and ILl = 0.67. One orbit is represented 
on the figure [oblique dotted lines of slope tan(f2)]. Since tan(.Q)=2fl/n= ~ is rational, all 
orbits are periodic. 



Integrability and Pseudointegrability in Billiards 65 

J2(E, I0,  qH) where J~(E, K) =]LI = E- -  2K and J2(E, K) = K. We obtain 
the angle 

tgS tgJ 10S,. OJ 20S  r 

qJ - OK OK - ~  + OK O J2 

which leads to 

7[ 

We can now interpret this change of variables with the help of what has 
been done for continuous time. Let us examine the shape of the boundary 
of the billiard in variables (q~, q)2) at fixed values of (I~,/2)" Since each 
side can be written as a function of cp2, as seen in Fig. 15, the boundary 
in variables (q~,cp2) can be parametrized by the coordinate ~ =  
-2(fl/Tt) q~ + ~2. This corresponds to a projection of the surface of section 
on the surfaces q~, = 0 and q~ = rt in the direction parallel to the flow. In 
other words, this corresponds to a change of surface of section defining a 
new Poincar6 section since the resulting map in coordinates (K, ~) may 
also be interpreted as a return map. 

3.4. Pseudointegrability Reflected in the Map: Case 13=3n/2 

We recall that pseudointegrability has been defined through the 
structure of the phase space, therefore it is a property visible in the con- 
tinuous-time approach. How will pseudointegrability manifest itself in the 
discrete-time system? 

We will answer this question for the pseudointegrable case fl = 3n/2 of 
the harmonic wedge. We use the same definitions as in Section 2.4. 

3.4.1.  Case e > 0 .  First we consider the situation where e > 0 .  As 
we have seen, the discontinuities of type III are not manifested in the map. 
These discontinuities are represented on Fig. 16 by points A and C: these 
points belong to the invariant subspace of nonproper orbits. The only dis- 
continuity is of type I, which is represented by B. Let us examine in more 
detail how orbits arriving close to the vertex are separated. 

It is easy to follow an orbit on the torus M ~ using Fig. 16a. Two (Et, E2) 
parallel orbits arriving close to B, the first on side 1 (segment BC) and the 
second on side 2 (segment AB), are separated since the first is sent by the 
reflection close to A on segment DA and the second close to C on segment 
CD. Then the geodesic flow sends the first close to A on segment AB and 
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Fig. 16. Same representation as in Fig. 9. (a) The process responsible for the continuity of 
T 2 when fl = 3~r/2 and e > 0: two near orbits arriving close to B are again near after two colli- 
sions. (b) e < 0: this is not longer the case, because the orbits have other collisions before they 
can be repasted. 

the second close to C on segment BC. At the end, the reflection sends the 
first close to D on segment CD and the second close to D on segment DA. 
Hence two near orbits arriving close to B are separated by the first reflec- 
tion but are pasted together (i.e., they are again near) after a finite time. 
From this, we can deduce that T 2 is continuous around B. 

Here we have a new counterexample of the heuristic rule stated in 
ref. 9. We said in that paper that there could exist billiards where a certain 
power of T is continuous due to nonlocal properties of the flow: two orbits 
first separated by the angle can be pasted later (after a nonvanishing time) 
if a second passage through a discontinuity systematically occurs which 
cancels the effect of the first. We presented an example where this can- 
cellation was due to the shape of the boundary. Here we have a second 
example, where this cancellation is due to the potential. 

Now, we come back to the harmonic wedge. Thanks to the fact that 
the proper orbits stay in a restriction of M~ej. e2), we can make the same 
reasoning as for the case fl = g/2 (see Appendix B). Hence we can construct 
AAV for the bouncing map. But now the map x0eM~-~(H~, )Xo is dis- 
continuous anyway. That is why the system is defined as being pseudo- 
integrable in the continuous-time approach, but is clearly integrable in the 
discrete-time approach, which automatically takes into account the 
dynamics on the level set. In the discrete-time approach, the integrable 
nature of the system is more evident. 

3.4.2. C a s e  c < 0 .  In the situation where e <0,  the discontinuities 
of type III play an important r61e. Indeed, if we try to follow orbits arriving 
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close to the vertex B in Fig. 16b, we see that these orbits encounter the 
boundary before coming back to B. so that they will not be pasted later: 
the discontirtuities of type III forbid the process of cancellation of the first 
discontinuity of type I. 

By the same type of construction as done in Appendixes A and B for 
the previous cases, we can see in Appendix C that the dynamics is that of 
an interval exchange transformation with four intervals, whereas it was two 
intervals in the preceding results. We could say that T is pseudointegrable, 
being an interval exchange transformation of more than two intervals (as 
in billiards in rational polygons; see ref. 7). 

4. C O N C L U S I O N  

In the continuous-time approach, we have seen that Liouville's 
theorem is still valid for billiards, with slight changes in some statements. 
It is not always true that the level sets are isomorphic to tori: the presence 
of singularities of nonzero index in the vector fields tangent to the level sets 
makes the theorem not valid. In the integrable cases of billiards, the 
changes of variables leading to AAV are, in general, nondifferentiable 
isomorphisms: the level sets are only isomorphic to the torus T 2. 

If the construction of AAV for the continuous time may be performed 
(i.e., if we have checked that the level set is isomorphic to a torus), we get 
a Hamiltonian formulation of the billiard problem without having to deal 
explicitly with the reflections: the change of variables leading to AAV 
allows us to obtain the flow @ of the billiard in variables (I, q~) as a proper 
function of time. Then the question arises of whether this single structure 
is preserved when we perturb the integrable case. The answer differs for the 
two cases of the harmonic wedge that we treated. 

In the discrete-time approach, we have seen that if T is a dif- 
feomorphism, the change of variables leading to the AAV of the map may 
be interpreted as a change of the Poincar6 surface of section. It also appeared 
that considering the whole boundary as the surface of section is not the 
better choice to study the system. We also underlined a deep difference 
between continuous time and discrete time in the pseudointegrable case, 
since the map corresponding to a pseudointegrable case (in the sense of the 
continuous tinke) may take the form of an integrable map. This leads to dif- 
ferences of the definition of pseudointegrability for the two points of view. 

A P P E N D I X A .  INTEGRABIL ITY OF THE M A P  IN THE 
CASE 13 = n/2 

o On the torus Mle,,~2 I, in coordinates (~1,0c2), we define the points 
A=(--~1,~2),  E~(--0~l ,2~l - - f f2) ,  B--(--oZl,--0~2) , and C=(oZt-oZ2), 
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i, 

B 

~2 

,/ or, 1 

C 

Fig. 17. Using the same representation as in Fig. 5a, we show how to cut off the line ABC 
in order to interpret T as an interval exchange transformation when fl = n/2. Here E is the 
preimage of B and A' is the image of A (A is a point on side 2). T sends AE to A'B, EB to 
BC (then it sends AB to A'C), and BC to AA'. Then T exchanges two intervals: it is a discrete 
rotation. 

where oZ~ = Oco(E;) (see Fig. 17). We suppose  that  o h < 0Z~_ (otherwise pe rmute  
the indexes denot ing the sides). AB represents side 2, BC represents side 1, 
and E is the pre image  of B. Since the slope of  the orbits  in this representa-  
t ion is 1, l e n g t h ( B C ) =  length(EB);  this is a crucial fact in this construct ion.  
We can parametr ize  univoquely the bounda ry  with the help of  the variable 
~k~ [0, 2z~[ defined as follows: 

( _----~_ (o~2 - 0c2) if =1 = - g l  

~0 r 1 --]-- ~X 2 

~ = J  7r (2oZ,+0Zj+oq) if o c , = - o Z ,  
~.oZl + 0Z2 - _ _ 

The  act ion of  T on ~ is given by 

0~ 1 

~1 + oZa 

Then the m a p  T at fixed value of (E l ,  E2) can be writ ten as a discrete rota-  
tion and has the form of  an integrable map.  

A P P E N D I X  B. I N T E G R A B I L I T Y  OF THE M A P  IN THE CASE 
13 = 3~/2, e > 0  

0 On the torus M(E~.e21, in coordinates  ( ~ ,  oc2), we define the points  
A --- (oZ l , - oZ,), E = (0Z l , oZ~ - 20~ 1 ), B = (oZ 1 , oZ2), and C = ( -oZ l , 0Z2), where 
o~, = a r c c o s ( g / v / ~ , .  ) (see 15ig. 18a). We suppose that  oZ 1 < oZ 2 (otherwise per-  
mute  the numbers  of  the sides). With  these definitions, the dynamics  and 
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L iX l 

i / It/ ? 

-~ i ........... , /  

........ t i l  ............ t , , ;  / 

O~ 2 

(a) (b) 

Fig. 18. Using the same representation as in Fig. 9, we show how to cut off the line ABC 
in order to interpret T as an interval exchange transformation when fl = 3n/2. (a) e > 0. Here 
E is the preimage of B and A'is the image of A. The map T sends AB to A'C and BC to AA'. 
Then T exchange two intervals. (b) e <0. Here E is the preimage of B, B' is the image of B 
(interpreted as a point on side 2), F is the preimage of A, A' is the image of A, F' is the image 
of B (interpreted as a point on side 1 ), and G is the preimage of C. The map T sends AF to 
A'F', FB to AB', BG to F'C, and GC to B'A'. Then T exchanges four intervals. 

the significance of  the segments  AE, EB, and  BC are  the same as in 
Append ix  A when fl = g/2. Hence we find tha t  we can paramet r ize  univo-  
cal ly the b o u n d a r y  with  the help of  the var iable  ~ [0,  2g[  defined as 
follows: 

k ~  (2o~2 + o~1 - oq) if o~2 = - - ~  2 

We get the same conclus ion  for the ac t ion  of  the m a p  T on the var iable  ~b. 
We took  advan t age  of  the fact tha t  the bi l l iard  with f l - - -3g/2 and 

g =  d > 0  can be in te rpre ted  as the "exter ior  p r o b l e m "  of  the bi l l iard  with 
f l - - ~ / 2  and g =  - d <  0. I t  is easy to prove,  using coord ina tes  (0q, 0c2), tha t  
to each orb i t  of  the first b i l l iard  there co r r e sponds  univocal ly  an orbi t  of  
the second. C~lling Text the bounc ing  m a p  of  the first b i l l iard  and Tin t tha t  
of  the second,  we have 

TextX 0 = ITintlX 0 

where I is the m a p  co r re spond ing  to the invers ion of  the m o m e n t u m :  
p ~ - p. The  m a p  I sends the poin ts  A, B, C, D in t roduced  for fl = n/2 to, 
respectively,  the poin ts  A, B, C, D in t roduced  for fl = 3~/2. 



70 Dagaeff 

A P P E N D I X C .  INTERVAL EXCHANGE T R A N S F O R M A T I O N  IN 
THE CASE 13=317/2, c < 0  

For  a fixed value of  (El ,  E,_), in coordinates  ( ~ ,  ct2), we define the 
points A=(0ZI-~2) ,  E=(0Zj,  c~-20Zl), F=(0Zl ,  2n-2~,-0Z2), B = ( ~ l ,  0Z2), 

G ~ (2n - 20Z2 - 0Zl, ~2), and C =- (-0~1,0Z2), where ~i = a r c c o s ( g / x / / ~ )  (see 
Fig. 18b). We suppose that 0Zt <0Z2 (otherwise permute the numbers  of  
the sides). E is the preimage of  B, F is the preimage of  A, and G is the 
preimage of  C. We can introduce a variable ~b which parametrizes the 
boundary  as before. This time, T exchanges the four intervals AF, FB, BG, 
and GC. It is not  a rota t ion (interval exchange t ransformation of  only two 
intervals). The discontinuities play a major  role in the cutt ing of  the 
interval. When e < 0 we must  take into account  the preimages of  points A 
and C. Note  that, due to these discontinuities, the billiard with f l =  3n/2 
and g =  - d < 0 is not  the exterior problem of the billiard with fl = ~/2 and 
g = d > O .  
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